
Hackable Badge Challenge Walkthrough For SANS
EMEA & NCSC UK’s CyberThreat24
Solution For “Echo Service” By Badge Challenge Author, Secure
Impact’s Security Engineer, Nathan Taylor
When we start this challenge, we’re presented with a screen informing us that USB serial is required, and
nothing else. If we connect over serial and then go back and start the challenge we’ll see the following:

[BOOT] Firmware OK
[BOOT] Complete. Welcome!
Send a single LF to start the challenge.

If we send an LF character, as instructed, we see “Service ready” at which point anything we send is
returned back to us.

[ECHO] Service ready
hello
hello
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

As some of you might already be screaming at your screen, this smells like it’s going to be a buffer
overflow—and it is. If we type a lot of characters in (around 70), the badge just crashes. Sometimes it’ll
reboot and other times it’ll just freeze.

Unfortunately, this is embedded hacking, not your standard local buffer overflow, so proceeding blind at
this point would be particularly challenging. Luckily for us, we have a copy of the firmware already… it’s
on the badge in your hands!

To communicate with the badge at a lower level, we need to use a piece of software called avrdude. While
this tool has many options, we’re going to just be using it to communicate with the bootloader.

The bootloader on the hackable badges is Optiboot, running at 115200 baud. This is an Arduino-
compatible bootloader, so we can use the following command to dump the firmware:

avrdude -V -v -pm1284p -carduino -b115200 -PCOM9 -Uflash:r:flash.bin:r

Use avrdude --help to get a break-down of these arguments. My badge was assigned COM9 but yours

will likely be different.

https://github.com/avrdudes/avrdude

This created a flash.bin file containing all 128KiB of the on-chip flash. We don’t actually want to

analyse all of this. Starting at 1FC00h is the bootloader itself, and there’s a large amount of FFh padding

between the main program and the bootloader. By looking at where the FFs start we can truncate the file to
149A8h.

It’s time to get analysing! I’m going to be using Ghidra, but IDA would probably work just fine. As we have
a raw binary file, we’re going to need to tell Ghidra what it is. A search for “AVR” should list a few options,
but in our case we want the 24-bit variant, compiled with GCC.

Once imported, run analysis then jump to the reset handler at code:2cbe .

Normally when performing binary analysis, you might be used to all of your memory sections automatically
loading. This is information that’s encoded into the headers of an ELF or PE file that let the operating
system handle memory loading. In embedded we get no such luxury. Instead, the reset handler contains
some basic routines to setup the processor RAM before the rest of the firmware executes. Exactly what
these routines look like depends on the target architecture and the compiler, but they are generally rather
standard.

We can usually expect to see at least two loops. One will be loading .data and the other will be
zeroing .bss . It’s not uncommon to see additional regions being loaded, but in our case here we just have

the two.

This is the first loop, which is copying our static initialisation data out of flash and into memory. AVR has a
word size of 16 bits, so while the copy operation is reading from code:9DB5 , that corresponds to an offset

of 13B6Ah in our raw flash dump.

The loop to zero out .bss is a little simpler as it doesn’t need to read initialisation data.

We can now go into the memory map and setup our sections. .text already exists as our imported file

however we can now truncate it at the start of the initialisation data. Importantly, also make sure we mark
it as read-only as this will help Ghidra with analysis.

After we’ve setup the memory map, it’s worth re-running analysis.

At this point, it’s always a good time to check strings! We know we have the “Service ready” string to look
for, and sure enough we can find it. There are at this point two important things to notice. The first is the
“Challenge solved!” string just below and the second is the lack of any cross-reference to the strings. I
don’t know how well IDA handles this, but Ghidra is struggling to reconcile addresses that address other
memory regions. The load instructions are in code: , but due to how AVR works they implicitly reference

mem: .

We have a saving grace though. Accesses to these strings will always be performed using the following
two instructions:

LDI R22, LOW(ADDRESS)
LDI R23, HIGH(ADDRESS)

We can write a small script to assemble these two instructions for any given address and then do a byte
search for those four bytes!

while True:
 offset = int(input(">"), 16)
 print(
 f"6{(offset >> 0) & 0xF:x} "
 f"e{(offset >> 4) & 0xF:x}\t\t"
 f"ldi\tR22,0x{offset & 0xff:02x}"
)
 print(
 f"7{(offset >> 8) & 0xF:x} "
 f"e{(offset >> 12) & 0xF:x}\t\t"
 f"ldi\tR23,0x{(offset >> 8) & 0xff:02x}"
)

 This is a little into the weeds, but working with AVR always ends up being like this. If we use this tool for
address 0C1D it tells us the bytes to search for are going to be 6D E1 7C E0 . This has one match:

The function at this address also looks like what we might expect; I’ve already named a few of these
functions for simplicity.

Ghidra’s decompiler struggles with AVR quite substantially so it may be easier to follow along in the
disassembly instead. The majority of this function is a loop that reads from serial and writes values to the
stack, breaking out of the loop when a newline character is received.

Checking the start of this function, we can see where the stack is initialised. 66 bytes are being allocated on
the stack, which in this instance corresponds to a 64 byte buffer and 2 bytes for the buffer index.

Now’s the time to pause reading and try and completely reverse engineer this function by hand, if you
want. For the rest of us, here’s the original source code:

static void echoServiceInner() {
 uint8_t iBuffer = 0;
 char aBuffer[64];
 while (1) {
 if (Serial.available()) {
 uint8_t u8Val = Serial.read();
 if (u8Val == '\n') {
 Serial.write(aBuffer, iBuffer);
 Serial.println();
 break;
 }
 aBuffer[iBuffer++] = u8Val;
 }
 }

 // ~~oooooo~~~~ I wonder where this will take us!
 return;
}

As the comment there might suggest, our objective is going to be to overwrite the return pointer on the
stack. We know we have 66 bytes of allocated stack to clobber, so our payload is going to start with 66
nonsense characters. The next two bytes on the stack are the return address, and then finally we’re going
to need to include a newline character to trigger the break condition.

The question would be, where do we need to return? Remember that “Challenge solved” string from
earlier? Let’s go follow that. Using our same script from earlier, address 0C32 will be loaded by the

sequence 62 E3 7C E0 .

As with last time, there’s only a single hit for this sequence. This makes our target return address
code:8D59 .

Putting all of that together, we get a payload of

AA\x8D\x58\n

Sending this to the badge, we can see

[ECHO] Service ready
AA@Ž�X
[ECHO] Challenge solved!
[BOOT] Firmware OK
[BOOT] Complete. Welcome!

The challenge was solved, and then the badge crashed and rebooted!

Keep that firmware image loaded in Ghidra; we’re going to need it again for the next challenge too.

	Hackable Badge Challenge Walkthrough for SANS EMEA & NCSC UK’s CyberThreat24
	Solution for “Echo Service” by badge challenge author, Secure Impact’s Security Engineer, Nathan Taylor

