-
m
VO
> C
O
-{ m
x

Hackable Badge Challenge Walkthrough For SANS
EMEA & NCSC UK’s CyberThreat24

When we start this challenge, we’re presented with a screen informing us that USB serial is required, and
nothing else. If we connect over serial and then go back and start the challenge we’ll see the following:

[BOOT] Firmware OK
[BOOT] Complete. Welcome!
Send a single LF to start the challenge.

If we send an LF character, as instructed, we see “Service ready” at which point anything we send is
returned back to us.

[ECHO] Service ready

hello

hello
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

As some of you might already be screaming at your screen, this smells like it’s going to be a buffer
overflow—and it is. If we type a lot of characters in (around 70), the badge just crashes. Sometimes it’ll
reboot and other times it’ll just freeze.

Unfortunately, this is embedded hacking, not your standard local buffer overflow, so proceeding blind at
this point would be particularly challenging. Luckily for us, we have a copy of the firmware already... it’s
on the badge in your hands!

To communicate with the badge at a lower level, we need to use a piece of software called avrdude. While
this tool has many options, we’re going to just be using it to communicate with the bootloader.

The bootloader on the hackable badges is Optiboot, running at 115200 baud. This is an Arduino-
compatible bootloader, so we can use the following command to dump the firmware:
avrdude -V -v -pml284p -carduino -b115200 -PCOM9 -Uflash:r:flash.bin:r

Use avrdude --help to get a break-down of these arguments. My badge was assigned COM9 but yours
will likely be different.

hello@secure-impact.com | +44 (02) 4551 4730

https://github.com/avrdudes/avrdude

-
m
VO
> C
O
-{ m
x

This created a flash.bin file containing all 128KiB of the on-chip flash. We don’t actually want to
analyse all of this. Starting at 1IFC00y, is the bootloader itself, and there’s a large amount of FFy, padding
between the main program and the bootloader. By looking at where the FFs start we can truncate the file to
149A8;,.

It’s time to get analysing! I'm going to be using Ghidra, but IDA would probably work just fine. As we have

a raw binary file, we’re going to need to tell Ghidra what it is. A search for “AVR” should list a few options,
but in our case we want the 24-bit variant, compiled with GCC.

Format: |Raw Binary

Language: |avr8:LE:24:xmega:gcc
Destination Folder: (CT24:/

Program Name: |flash_wt.bin

Options...

OK Cancel

Once imported, run analysis then jump to the reset handler at code:2cbe.

Normally when performing binary analysis, you might be used to all of your memory sections automatically
loading. This is information that’s encoded into the headers of an ELF or PE file that let the operating
system handle memory loading. In embedded we get no such luxury. Instead, the reset handler contains
some basic routines to setup the processor RAM before the rest of the firmware executes. Exactly what
these routines look like depends on the target architecture and the compiler, but they are generally rather
standard.

We can usually expect to see at least two loops. One will be loading .data and the other will be
zeroing .bss . It’s not uncommon to see additional regions being loaded, but in our case here we just have

the two.

hello@secure-impact.com | +44 (02) 4551 4730

-
m
VO
> C
O
-{ m
x

__do_copy_data

code:002cc4 1d =0 1di
code:00 ldi
code 1di
code 1di
code ldi
code 1di

code
code: 00

out

rimp

{REF code:002cd0(3)
LAB_code_002cce XREF([1]: code: 0
code cpi
code cpe
code:002cd0 d9 £7 brbe LAB_code_002cce, ZElg

This is the first loop, which is copying our static initialisation data out of flash and into memory. AVR has a
word size of 16 bits, so while the copy operation is reading from code:9DB5 , that corresponds to an offset
of 13B6Ay, in our raw flash dump.

rimp .do_clear_bss_start

.do_clear_bss_loop XREF([1]: code:002cd8 ()

code:002cd5 1ld 92 st X+=>DAT_mem_ Odce,Rl

.do_clear_bss_start XREF[1]: code:002cd4 (3)
code:002cdé a€ 35 cpi 56

2cd? b2 07 cpc

code:002cd8 el £7 brbec .do_clear_bss_loop,Zflg

The loop to zero out .bss is a little simpler as it doesn’t need to read initialisation data.

We can now go into the memory map and setup our sections. .text already exists as our imported file

however we can now truncate it at the start of the initialisation data. Importantly, also make sure we mark
it as read-only as this will help Ghidra with analysis.

Name Start B End Length R W X Volatie Artificial Overl... Type . Byte Source
Jtext code:000000 code:003db4.1 0x13b€a O O (m} Default [flash.bin[0x0, 0x13b6a]
.data mem: 0100 mem: Oded Oxcee O O O Default [fiash.bin[0x13b6a, Oxcee]
.bss mem: Odce mem: 2158 0x1388 M 0O O O Default [initfox1388]

After we’ve setup the memory map, it’s worth re-running analysis.

At this point, it’s always a good time to check strings! We know we have the “Service ready” string to look
for, and sure enough we can find it. There are at this point two important things to notice. The first is the
“Challenge solved!” string just below and the second is the lack of any cross-reference to the strings. I
don’t know how well IDA handles this, but Ghidra is struggling to reconcile addresses that address other
memory regions. The load instructions are in code: , but due to how AVR works they implicitly reference
mem: .

hello@secure-impact.com | +44 (02) 4551 4730

-
m
VO
> C
O
-{ m
x

MEMIUCUC DU /& &3 as FIESS any Dutton”

nem:0cld Sb
42 4f 5d
20 53 €5 ..

mem:0c32 Sb 45 43 ds "[ECHQ] Challenge solved!”™
43 4f 54

We have a saving grace though. Accesses to these strings will always be performed using the following
two instructions:

LDI R22, LOW(ADDRESS)
LDI R23, HIGH(ADDRESS)

We can write a small script to assemble these two instructions for any given address and then do a byte
search for those four bytes!

while True:
offset = int(input(">"), 16)
print(
f'"6{(offset >> 0) & OxF:x} "
f'e{(offset >> 4) & OxF:x}\t\t"
f"1di\tR22,0x{offset & Oxff:02x}"

)
print(
f"7{(offset >> 8) & OxF:x} "
f'e{(offset >> 12) & OxF:x}\t\t"
f"1di\tR23,0x{ (offset >> 8) & Oxff:02x}"
)

This is a little into the weeds, but working with AVR always ends up being like this. If we use this tool for
address OC1D it tells us the bytes to search for are going to be 6D E1 7C EO . This has one match:

Hex v| |6DE17CEOQ

Byte Sequence: I6d el7ced

Location B MatchBytes Match Val
||| code:008cf8 €d el 7c e0

The function at this address also looks like what we might expect; I've already named a few of these
functions for simplicity.

>

]
I N N
T T
5
\

hello@secure-impact.com | +44 (02) 4551 4730

-
m
VO
> C
O
-{ m
x

Ghidra’s decompiler struggles with AVR quite substantially so it may be easier to follow along in the
disassembly instead. The majority of this function is a loop that reads from serial and writes values to the
stack, breaking out of the loop when a newline character is received.

_loop_head

code:008ckb9 83 ea ldi

code:008cba 97 el 1di

code:008cbb 0e 94 e2 2f call

code:008ckd 21 0 1di

code:008cbe 89 2b or

code:008cbf 09 £4 brbc LAB code_008ccl,Zflg

code:008cc0 20 e0 1di R18,0x0
LARB code_008ccl

code : 00¢ and 3,R1E

code: 00 brbs op_head, Zflg

code: 1ldi

code: 97 1di

code:008ccS Qe 94 c0 2f call

code:008cc7 8a 83 std

code:008ccg 8a 81 ldd

code:008cc9 8a 30 cpi

code:008cca 381 £4 brbc _

code:008cch 89 81 ldd u

code:008ccc 28 2f OV R

code:008ccd 30 0 1di R19,

code:008cce ce 01 movw ugval

code:008cct 03 %6 adiw usv

code:008cd0 a9 0l movw R2

code:008cdl bec 01 movw R

code:008cd2 83 ea 1di usval

code:008cd3 97 el 1di usvi

code:008cd4 0Oe 94 95 31 call Print::write

code:008cdé 83 ea 1di ugval, Oxa3

code:008cd7 97 el 1di ugvVal, 0xl

code:008cde Oe 94 42 €8 call Print::println

code:008cda 0f c0O rjmp _return
_not_newline

code:008cdb 4a 81 1ldd

code:008cdc 89 81 ldd

code:008cdd 41 el 1di

code:008cde 98 0f add

code:008cdf 99 83 std

code:008ce0 88 2f mov

code:008cel S0 e0 1di

code:008ce2 %e 01 movw

code:008ce3 2d S£ subi

code:008ced 3f 4f sbci

code:008ce5 82 0f add

code:008ceé 93 1f adc

code:008ce7 fc 01 movw

code:008ced 40 83 at Z,R20

code:008ced cf cf rjmp _loop_head
_return

code:008cea ce Sb subi Ylo, Oxbe

Checking the start of this function, we can see where the stack is initialised. 66 bytes are being allocated on
the stack, which in this instance corresponds to a 64 byte buffer and 2 bytes for the buffer index.

hello@secure-impact.com | +44 (02) 4551 4730

-
m
VO
> C
O
-{ m
x

x X
X
x
undefined echoServicelnner()
undefined2 R25R24:2 ugVal
echoServicelnner
code:008cad cf 93 push Ylo
code:008cae df 93 push Yhi
code:008caf cd b7 in
code:008chb0 de b7 in
code:008cbl c2 54 subi
code:008cb2 sbc Yhi,R1
code: 008 in RO, SREG
code:008cb4 £8 cli
code:008cbS out
code:008ché 0f be out
code:008chb7 cd bf out
code:008chbg 19 382 std Rl

Now’s the time to pause reading and try and completely reverse engineer this function by hand, if you
want. For the rest of us, here’s the original source code:

static void echoServiceInner() {
uint8_t iBuffer = 0;
char aBuffer[64];
while (1) {
if (Serial.available()) {
uint8_t u8Val = Serial.read();
if (u8val == '"\n') {
Serial.write(aBuffer, +iBuffer);
Serial.println();

break;
}
aBuffer[iBuffer++] = u8Val;
}
}
// ~~oooooo~~~~ I wonder where this will take us!
return;

3

As the comment there might suggest, our objective is going to be to overwrite the return pointer on the
stack. We know we have 66 bytes of allocated stack to clobber, so our payload is going to start with 66
nonsense characters. The next two bytes on the stack are the return address, and then finally we’re going
to need to include a newline character to trigger the break condition.

The question would be, where do we need to return? Remember that “Challenge solved” string from
earlier? Let’s go follow that. Using our same script from earlier, address 0C32 will be loaded by the

sequence 62 E3 7C EO.

hello@secure-impact.com | +44 (02) 4551 4730

SECURE L
IMPACT v
x
x

As with last time, there’s only a single hit for this sequence. This makes our target return address
code:8D59 .

undefined FUN_code

Riatl

FUN_code_008d58

Serial.println("[EC

code 93
code:008d59 df 93
code:008d5a 00 d0
code:008dSk cd b7
code:008dSc de b7
code:008dSd €2 e3
code Se T7c e0
code:008dSE 83 ea
code:008d€0 97 el
code:008dél Oe 94 4¢€ €8
code:008d€3 80 91 cc lc
code:008de5 90 91 cd lc
code:008d€7 80 &8
code:008dég 90 93 cd lc
code:008déa 80 93 cc lc
code Oe 94 07 74
code:0 19 82

Putting all of that together, we get a payload of

push Ylo
push Yhi
rcall
in

in Yh
1di R

ldi R2
1di R2
1di R

erial, 0x17

HO] Challenge solved!™);

call Print::println
lds R24,DAT_mem lccc
lds

ori 0x20

sts DAT_mem lccd,R25
sts DAT _mem lccc,R24
call) 007407
std Y+0x1,R1

AA\X8D\ x58\n

Sending this to the badge, we can see

[ECHO] Service ready

AARZ € X

[ECHO] Challenge solve
[BOOT] Firmware OK
[BOOT] Complete. Welco

d!

me!

The challenge was solved, and then the badge crashed and rebooted!

Keep that firmware image loaded in Ghidra; we’re going to need it again for the next challenge too.

hello@secure-impact.com

+44 (02) 4551 4730

	Hackable Badge Challenge Walkthrough for SANS EMEA & NCSC UK’s CyberThreat24
	Solution for “Echo Service” by badge challenge author, Secure Impact’s Security Engineer, Nathan Taylor

