
Hackable Badge Challenge Walkthrough For SANS
EMEA & NCSC UK’s CyberThreat24
Solution For “A Nice Edit” By Badge Challenge Author, Secure
Impact’s Security Engineer, Nathan Taylor
Just like in the previous challenge, we’re prompted to open a serial console to proceed.

[BOOT] Firmware OK
[BOOT] Complete. Welcome!
There are currently 7 unsolved challenges
This challenge carries a high risk of soft-bricking your badge!
It's strongly recommended to solve all the others first :)
Send a single LF to start the challenge.

On the test badge I’m using here I haven’t completed all previous challenges and I’m receiving a rather apt
warning that I should finish those first. Accepting that warning a rather more in one’s face warning
appears.

The processors used on the hackable badges are ATmega1284Ps. Like many in the ATmega series of parts
this chip lacks any USB functionality. Instead, an FTDI serial converter chip is being used, connected to
one of the hardware UARTs. This is how we’re able to get a serial console to the badge over USB.

There are a handful of ways to program an ATmega chip, however we’re particularly interested in two of
them. The first is In System Programming, or ISP. This operates over SPI and allows a programmer to
write to flash. The MOSI, MISO, RESET and SCK pins are used when performing ISP. This is notably not
USB, and delegates were not expected to bring an ISP programmer with them to the event!

To facilitate programming over USB, a small bootloader is provisioned onto the microcontroller that can
then use self-programming. This bootloader checks if a computer is trying to enter programming mode,
otherwise it hands over to the normal user code. When we dumped flash in the previous challenge this is
what we were doing.

But why the warning and long-winded explanation? This challenge is going to require us to write to flash.
If we erase all of flash and write our new program, we get exactly one try because in the process we would
have removed the bootloader! While the bootloader can be reinstalled using ISP it’s game-over for USB
programming.

avrdude provides the -D flag which instructs the programmer to erase the minimum amount of flash

required for the new firmware, rather than a complete chip erase. You must use this flag at all times unless
you have an ISP programmer available for recovery—I had one with me during the event in anticipation of
people disregarding this warning.

With all that said, shall we get back to the actual challenge?

From the previous challenge I trust you’re now familiar with the process of finding string usages. Let’s
have a look for that warning message:

This doesn’t look super useful; let’s check the calling function instead:

What we’re seeing here is interesting. There’s a check for a specific byte value, and either some code runs,
or the challenge prompt is issued. Given the name of the challenge, it’s rather safe to assume we’re going
to need to edit something, and in this case what we need to do is to get to that first code-path.

While we could invert the condition itself, it’s somewhat simpler to just change that single byte at
mem:025B to be 69h. We know how memory maps to flash.bin , so we could find out the offset

“properly”, or we could just do a search for the surrounding bytes.

We can make a simple edit of that first 01h to 69h, save, then run the following command to flash the

firmware back to the badge:

avrdude -V -v -D -pm1284p -carduino -b115200 -PCOM9 -Uflash:w:flash.bin:r

Congratulations. Your badge no longer works!

The good news is this was expected. If you see anything other than a pure red screen at this point it’s likely
you didn’t flash the badge correctly.

Why, though, are we seeing a red screen? In embedded software development, code integrity is often a
concern; these hackable badges are no different. Remember that [BOOT] Firmware OK we’ve been

seeing every time we connect over serial? That’s not just flavour text. The first thing the badges do when
they power on is validate their own firmware.

You might already have some ideas of how this is performed, especially if you’re familiar with AVR, but
let’s take a look at the code. Following on from the reset handler we can jump through the initialisation

code to land at our void main(void) 1 function at code:905f .

Before the bulk of setup occurs, we can see a large loop, some conditions, and then finally that output of
Firmware OK we’re looking for. Ignore the GPIO_... names; Ghidra is getting a little confused with

register names.

You would be correct to reason that this is our firmware check. We first have a loop that calculates a
checksum, compares it to 0, and errors if it is not zero. Reasoning from this, we need to amend our
firmware such that the checksum comes out as 0000h. This poses two questions: what checksum is being

performed, and how do we ensure its value?

Both are relatively simple questions to answer. The AVR compiler toolchain includes a number of pre-
defined CRC implementations in crc16.h . If we compare these to the disassembly of the firmware, that

loop reveals itself to be repeated calls to _crc_xmodem_update .

To make the checksum valid, we could just edit any random bytes in the firmware. If that feels like an icky
thought it’s because it is. This is generally the point to stop and think “what did the original software
engineer do here?”. There’s a very common place for CRCs and corrective bytes to appear in firmware, and
that’s tacked onto the end of the firmware blob, after the compiler has done its dues.

If we go and look at flash.bin , we can see two seemingly random bytes after what’s quite clearly a

bunch of strings. The especially astute may also have noticed that the initialisation data for .data ended

at 149A6h, meaning these two bytes were tacked on afterwards.

A convenient quirk of CRC16 XMODEM (and of many other CRCs) is adding the compute CRC to the end
of a block of data causes its CRC to now calculate as 0. We can sanity check our previous assumption by
calculating the CRC of the un-edited firmware without the last two bytes, and we receive FB77 as

expected. If we calculate the checksum with our edit, we instead receive D69D . Let’s edit that into our

firmware and then re-flash to the badge.

At this point, your badge should now be taking you back to the name display as normal, but the challenge
isn’t marked as completed. Head into the challenges menu, select A Nice Edit, and you’ll see the challenge
completed display.

Congratulations! That’s all 9 of the challenges for the CyberThreat 2024 badge! Hopefully you learnt some
things along the way, or at the very least had as much fun with them as I did writing them 😊.

1That’s not a familiar signature for main? If you’re used to programming for desktop platforms, you can
expect to have a C runtime that handles parsing command line arguments, passes them to main, then uses
the return value from main as a process exit code. We have none of that in embedded land! The arguments
to main are therefore going to be empty. Depending on the specific framework being used it may be
acceptable to return from main. For example, this project was compiled using PlatformIO and a Wiring-
based framework. In this instance, a return from main would land in _exit which contains an infinite loop.
This is often not the case, and it’s generally advised to ensure that you never return from main when
writing embedded code.

To highlight this distinction and avoid confusion, I often opt to name my main function something like
_entry instead, but the framework used here doesn’t play so nice with that.

	Hackable Badge Challenge Walkthrough for SANS EMEA & NCSC UK’s CyberThreat24
	Solution for “A Nice Edit” by badge challenge author, Secure Impact’s Security Engineer, Nathan Taylor

